mstc.learning package¶
Submodules¶
mstc.learning.pipeline module¶
Components for cross-validation and model evaluation.
-
generate_cross_validation_pipeline
(classifier, parameter_grid, folds=5, repeats=1, random_state=12345, number_of_jobs=1, scoring=None, refit=True)[source]¶ Evaluate a classifier trained with cross validation.
- Parameters
classifier (sklearn.base.ClassifierMixin) – a classifier.
parameter_grid (dict) – grid of parameter.
folds (int) – number of stratified cross validation folds, defaults to 5.
repeats (int) – number of cross validation repeats, defaults to 1.
random_state (int) – random state, defaults to 12345.
number_of_jobs (int) – number of jobs to run in parallel, defaults to 1. -1 means using all processors.
scoring (string, callable, list/tuple, dict or None) – socring function or functions to evaluate predictions on the test set. Defaults to None to use the classifier default score method.
refit (bool, string) – whether to refit with best estimator. For multiple metric evaluation, this needs to be a string denoting the scorer is used to find the best parameters for refitting the estimator at the end.
- Returns
an evaluation report.