cosifer.inferencers package¶
Submodules¶
cosifer.inferencers.aracne module¶
Aracne inferencer.
-
class
cosifer.inferencers.aracne.
Aracne
(estimator, disc='none', method='ARACNE', **kwargs)¶ Bases:
cosifer.inferencers.network_inferencer.NetworkInferencer
Aracne inferencer implementation.
-
estimator
¶ estimator type.
- Type
str
-
disc
¶ discretization type.
- Type
str
-
method
¶ name of the method.
- Type
str
-
cosifer.inferencers.clr module¶
CLR inferencer.
-
class
cosifer.inferencers.clr.
CLR
(estimator, disc='none', method='CLR', **kwargs)¶ Bases:
cosifer.inferencers.network_inferencer.NetworkInferencer
CLR inferencer implementation.
-
estimator
¶ estimator type.
- Type
str
-
disc
¶ discretization type.
- Type
str
-
method
¶ name of the method.
- Type
str
-
cosifer.inferencers.correlation module¶
Correlation inferencer.
-
class
cosifer.inferencers.correlation.
Correlation
(method=None, correction=None, confidence_threshold=0.05, **kwargs)¶ Bases:
cosifer.inferencers.network_inferencer.NetworkInferencer
Correlation inferencer.
-
method
¶ correlation method.
- Type
str
-
correction
¶ correction method.
- Type
str
-
confidence_threshold
¶ confidence threshold.
- Type
float
-
method
= None
-
cosifer.inferencers.funchisq module¶
FunChisq inferencer.
-
class
cosifer.inferencers.funchisq.
FunChisq
(k_min=3, k_max=7, k_step=1, method='FunChisq', correction=None, confidence_threshold=0.05, undirected=True, **kwargs)¶ Bases:
cosifer.inferencers.network_inferencer.NetworkInferencer
FunChisq inferencer.
-
k_min
¶ minimum number of quantization bins.
- Type
int
-
k_max
¶ maximum number of quantization bins.
- Type
int
-
k_step
¶ number of steps for bins search.
- Type
int
-
method
¶ name of the method.
- Type
str
-
correction
¶ correction method.
- Type
str
-
confidence_threshold
¶ confidence threshold.
- Type
float
-
undirected
¶ flag to indicate an undirected network.
- Type
bool
-
-
cosifer.inferencers.funchisq.
sort_interaction_entities
(row)¶ Sort the entities over a row in lexicographic order.
- Parameters
row (pd.Series) – row containing the entities to be sorted.
- Returns
- a list containing the sorted entities and the rest of the
elements of the row unchanged.
- Return type
list
cosifer.inferencers.genie3 module¶
GENIE3 inferencer.
-
class
cosifer.inferencers.genie3.
GENIE3
(tree_method='RF', k='sqrt', n_trees=1000, regulators=<rpy2.rinterface.NULLType object> [RTYPES.NILSXP], targets=<rpy2.rinterface.NULLType object> [RTYPES.NILSXP], n_cores=4, verbose=False, method='GENIE3', **kwargs)¶ Bases:
cosifer.inferencers.network_inferencer.NetworkInferencer
GENIE3 inferencer.
-
tree_method
¶ tree method.
- Type
str
-
k
¶ k criterion.
- Type
str
-
n_trees
¶ number of trees.
- Type
int
-
regulators
¶ known regulators.
- Type
object
-
targets
¶ known targets.
- Type
object
-
n_cores
¶ number of cores.
- Type
int
-
verbose
¶ toggle verbosity.
- Type
bool
-
method
¶ name of the method.
- Type
str
-
cosifer.inferencers.glasso module¶
Glasso inferencer.
-
class
cosifer.inferencers.glasso.
Glasso
(correction=None, method='gLasso', **kwargs)¶ Bases:
cosifer.inferencers.network_inferencer.NetworkInferencer
Glasso inferencer.
-
method
¶ name of the method.
- Type
str
-
cosifer.inferencers.jrf module¶
JRF inferencer.
-
class
cosifer.inferencers.jrf.
JointRandomForest
(ntree=500, mtry=None, merger=<function JointRandomForest.<lambda>>, correction=None, method='JRF', **kwargs)¶ Bases:
cosifer.inferencers.network_inferencer.NetworkInferencer
JRF inferencer.
-
ntree
¶ number of trees.
- Type
int
-
mtry
¶ number of variables for splitting.
- Type
int
-
merger
¶ a merger function.
- Type
function
-
method
¶ name of the method.
- Type
str
-
cosifer.inferencers.mrnet module¶
MRNET inferencer.
-
class
cosifer.inferencers.mrnet.
MRNET
(estimator, disc='none', method='MRNET', **kwargs)¶ Bases:
cosifer.inferencers.network_inferencer.NetworkInferencer
MRNET inferencer.
-
estimator
¶ estimator type.
- Type
str
-
disc
¶ discretization type.
- Type
str
-
method
¶ name of the method.
- Type
str
-
cosifer.inferencers.network_inferencer module¶
NetworkInferencer abstract interface.
-
class
cosifer.inferencers.network_inferencer.
NetworkInferencer
(**kwargs)¶ Bases:
cosifer.handlers.network_handler.NetworkHandler
Network inferencer interface.
-
trained
¶ flag to indicate whether the inference has been performed.
- Type
bool
-
graph
= None
-
infer_network
(data)¶ Infer the network.
- Parameters
data (pd.DataFrame) – data to be used for the inference.
-
trained
= False
-
cosifer.inferencers.tigress module¶
TIGRESS inferencer.
-
class
cosifer.inferencers.tigress.
TIGRESS
(tf_list=<rpy2.rinterface.NULLType object> [RTYPES.NILSXP], k=-1, alpha=0.2, n_steps_lars=5, n_bootstrap=1000, scoring='area', verbose=False, use_parallel=True, n_cores=4, method='TIGRESS', **kwargs)¶ Bases:
cosifer.inferencers.network_inferencer.NetworkInferencer
TIGRESS inferencer.
-
tf_list
¶ list of transcription factor.
- Type
object
-
k
¶ number of edges to return.
- Type
int
-
alpha
¶ alpha parameter.
- Type
float
-
n_step_lars
¶ number of LARS steps.
- Type
int
-
n_bootstrap
¶ bootstrap number.
- Type
int
-
scoring
¶ scoring criterion.
- Type
str
-
verbose
¶ toggle verbosity.
- Type
bool
-
use_parallel
¶ enable parallelism.
- Type
bool
-
n_cores
¶ number of cores.
- Type
int
-
method
¶ name of the method.
- Type
str
-
Module contents¶
Inferencer module.