cosifer.inferencers package

Submodules

cosifer.inferencers.aracne module

Aracne inferencer.

class cosifer.inferencers.aracne.Aracne(estimator, disc='none', method='ARACNE', **kwargs)

Bases: cosifer.inferencers.network_inferencer.NetworkInferencer

Aracne inferencer implementation.

estimator

estimator type.

Type

str

disc

discretization type.

Type

str

method

name of the method.

Type

str

cosifer.inferencers.clr module

CLR inferencer.

class cosifer.inferencers.clr.CLR(estimator, disc='none', method='CLR', **kwargs)

Bases: cosifer.inferencers.network_inferencer.NetworkInferencer

CLR inferencer implementation.

estimator

estimator type.

Type

str

disc

discretization type.

Type

str

method

name of the method.

Type

str

cosifer.inferencers.correlation module

Correlation inferencer.

class cosifer.inferencers.correlation.Correlation(method=None, correction=None, confidence_threshold=0.05, **kwargs)

Bases: cosifer.inferencers.network_inferencer.NetworkInferencer

Correlation inferencer.

method

correlation method.

Type

str

correction

correction method.

Type

str

confidence_threshold

confidence threshold.

Type

float

method = None

cosifer.inferencers.funchisq module

FunChisq inferencer.

class cosifer.inferencers.funchisq.FunChisq(k_min=3, k_max=7, k_step=1, method='FunChisq', correction=None, confidence_threshold=0.05, undirected=True, **kwargs)

Bases: cosifer.inferencers.network_inferencer.NetworkInferencer

FunChisq inferencer.

k_min

minimum number of quantization bins.

Type

int

k_max

maximum number of quantization bins.

Type

int

k_step

number of steps for bins search.

Type

int

method

name of the method.

Type

str

correction

correction method.

Type

str

confidence_threshold

confidence threshold.

Type

float

undirected

flag to indicate an undirected network.

Type

bool

cosifer.inferencers.funchisq.sort_interaction_entities(row)

Sort the entities over a row in lexicographic order.

Parameters

row (pd.Series) – row containing the entities to be sorted.

Returns

a list containing the sorted entities and the rest of the

elements of the row unchanged.

Return type

list

cosifer.inferencers.genie3 module

GENIE3 inferencer.

class cosifer.inferencers.genie3.GENIE3(tree_method='RF', k='sqrt', n_trees=1000, regulators=<rpy2.rinterface.NULLType object> [RTYPES.NILSXP], targets=<rpy2.rinterface.NULLType object> [RTYPES.NILSXP], n_cores=4, verbose=False, method='GENIE3', **kwargs)

Bases: cosifer.inferencers.network_inferencer.NetworkInferencer

GENIE3 inferencer.

tree_method

tree method.

Type

str

k

k criterion.

Type

str

n_trees

number of trees.

Type

int

regulators

known regulators.

Type

object

targets

known targets.

Type

object

n_cores

number of cores.

Type

int

verbose

toggle verbosity.

Type

bool

method

name of the method.

Type

str

cosifer.inferencers.glasso module

Glasso inferencer.

class cosifer.inferencers.glasso.Glasso(correction=None, method='gLasso', **kwargs)

Bases: cosifer.inferencers.network_inferencer.NetworkInferencer

Glasso inferencer.

method

name of the method.

Type

str

cosifer.inferencers.jrf module

JRF inferencer.

class cosifer.inferencers.jrf.JointRandomForest(ntree=500, mtry=None, merger=<function JointRandomForest.<lambda>>, correction=None, method='JRF', **kwargs)

Bases: cosifer.inferencers.network_inferencer.NetworkInferencer

JRF inferencer.

ntree

number of trees.

Type

int

mtry

number of variables for splitting.

Type

int

merger

a merger function.

Type

function

method

name of the method.

Type

str

cosifer.inferencers.mrnet module

MRNET inferencer.

class cosifer.inferencers.mrnet.MRNET(estimator, disc='none', method='MRNET', **kwargs)

Bases: cosifer.inferencers.network_inferencer.NetworkInferencer

MRNET inferencer.

estimator

estimator type.

Type

str

disc

discretization type.

Type

str

method

name of the method.

Type

str

cosifer.inferencers.network_inferencer module

NetworkInferencer abstract interface.

class cosifer.inferencers.network_inferencer.NetworkInferencer(**kwargs)

Bases: cosifer.handlers.network_handler.NetworkHandler

Network inferencer interface.

graph

graph representing the network.

Type

cosifer.collections.graph,Graph

trained

flag to indicate whether the inference has been performed.

Type

bool

graph = None
infer_network(data)

Infer the network.

Parameters

data (pd.DataFrame) – data to be used for the inference.

trained = False

cosifer.inferencers.tigress module

TIGRESS inferencer.

class cosifer.inferencers.tigress.TIGRESS(tf_list=<rpy2.rinterface.NULLType object> [RTYPES.NILSXP], k=-1, alpha=0.2, n_steps_lars=5, n_bootstrap=1000, scoring='area', verbose=False, use_parallel=True, n_cores=4, method='TIGRESS', **kwargs)

Bases: cosifer.inferencers.network_inferencer.NetworkInferencer

TIGRESS inferencer.

tf_list

list of transcription factor.

Type

object

k

number of edges to return.

Type

int

alpha

alpha parameter.

Type

float

n_step_lars

number of LARS steps.

Type

int

n_bootstrap

bootstrap number.

Type

int

scoring

scoring criterion.

Type

str

verbose

toggle verbosity.

Type

bool

use_parallel

enable parallelism.

Type

bool

n_cores

number of cores.

Type

int

method

name of the method.

Type

str

Module contents

Inferencer module.